1) $372 \div 17=\mathbf{2 1 r} \mathbf{1 5}$
$856 \div 23=\mathbf{3 7 r} 5$
$738 \div 32=\mathbf{2 3 r 2}$
$647 \div 13=49 r 10$
2) a) 21 rows of children.

The last row will only have 4 children sat in it.
b) 28 cups of lemonade.

The headteacher will have 4 p left over.
c) 31 packs.

There will be 6 additional pencils from the last pack.

1) Accept an explanation that shows that Elsa is correct.
$850 \mathrm{ml} \div 65=13$ bottles with 5 ml left over. So that there isn't any
wasted lemonade, the last bottle will only contain 5 ml .
2) $495 \div 15=\mathbf{3 3}$
$367 \div 15=\mathbf{2 4 r 7}$
$855 \div 15=57$
$954 \div 15=63$ r9
Only two of these calculations will leave a remainder because the other two questions have dividends which are multiples of 15 .

True - only 954 and 367 are not divisible by 15 and will therefore leave a remainder. 855 and 495 are both multiples of 15.

One of these calculations has a remainder which is odd.
False - both calculations that have a remainder, have remainders that are odd numbers.
Two of these calculations can also be divided by 45 without leaving a remainder.
True - both of the numbers which are multiples of $\mathbf{1 5}$ are also multiples of 45.

1) a) Accept: 108, 123, 138, 153, 168, 183, 198, 213, 228, 243, 258, 273 and 288.
b) Accept: 211, 230, 249, 268 and 287.
c) Accept: 132, 164, 196, 228, 260, 292 and 324.
2) Answers will vary but could include examples such as:

275 will leave a remainder with every divisor except 11.
767 will leave a remainder with every divisor except 13.
350 will only leave no remainder with 10 and 14.

